
CHAPTER 6

Energy Storage Elements: Capacitors and Inductors

To this point in our study of electronic circuits, time has not been
important. The analysis and designs we have performed so far have been
static, and all circuit responses at a given time have depended only on
the circuit inputs at that time. In this chapter, we shall introduce two
important passive circuit elements: the capacitor and the inductor.

6.1. Introduction and a Mathematical Fact

6.1.1. Capacitors and inductors, which are the electric and magnetic
duals of each other, differ from resistors in several significant ways.

• Unlike resistors, which dissipate energy, capacitors and inductors
do not dissipate but store energy, which can be retrieved at a later
time. They are called storage elements.
• Furthermore, their branch variables do not depend algebraically

upon each other. Rather, their relations involve temporal deriva-
tives and integrals. Thus, the analysis of circuits containing capac-
itors and inductors involve differential equations in time.

6.1.2. An important mathematical fact: Given

d

dt
f(t) = g(t),
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6.2. Capacitors

6.2.1. A capacitor is a passive element designed to store energy in its
electric field. The word capacitor is derived from this element’s capacity
to store energy.

6.2.2. When a voltage source v(t) is connected across the capacitor, the
amount of charge stored, represented by q, is directly proportional to v(t),
i.e.,

q(t) = Cv(t)

where C, the constant of proportionality, is known as the capacitance of
the capacitor.

• The unit of capacitance is the farad (F) in honor of Michael Fara-
day.
• 1 farad = 1 coulomb/volt.

6.2.3. Circuit symbol for capacitor of C farads:

C

+  v  –

(a)

i C

+  v  –

(b)

i

6.2.4. Since i = dq
dt , then the current-voltage relationship of the capac-

itor is

(6.3) i = C
dv

dt
.

Note that in (6.3), the capacitance value C is constant (time-invariant) and
that the current i and voltage v are both functions of time (time-varying).
So, in fact, the full form of (6.3) is

i(t) = C
d

dt
v(t).

Hence, the voltage-current relation is

v(t) =
1

C

∫ t

to

i(τ)dτ + v(to)
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0 dv/dt

Slope = C

i

where v(to) is the voltage across the capacitor at time to. Note that capac-
itor voltage depends on the past history of the capacitor current. Hence,
the capacitor has memory.

6.2.5. The instantaneous power delivered to the capacitor is

p(t) = i(t)× v(t) =

(
C
d

dt
v(t)

)
v(t).

The energy stored in the capacitor is

w(t) =

∫ t

−∞
p(τ)dτ =

1

2
Cv2(t).

In the above calculation, we assume v(−∞) = 0, because the capacitor
was uncharged at t = −∞.

6.2.6. Typical values

(a) Capacitors are commercially available in different values and types.
(b) Typically, capacitors have values in the picofarad (pF) to microfarad

(µF) range.
(c) For comparison, two pieces of insulated wire about an inch long,

when twisted together, will have a capacitance of about 1 pF.

6.2.7. Two important implications of (6.3):

(a) A capacitor is an open circuit to dc.
When the voltage across a capacitor is not changing with time

(i.e., dc voltage), its derivative wrt. time is dv
dt = 0 and hence the

current through the capacitor is i(t) = C dv
dt = C × 0 = 0.
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(b) The voltage across a capacitor cannot jump (change abruptly)
Because i = C dv

dt , a discontinuous change in voltage requires an
infinite current, which is physically impossible.

t

v

t

v

6.2.8. Remark: An ideal capacitor does not dissipate energy. It takes
power from the circuit when storing energy in its field and returns previ-
ously stored energy when delivering power to the circuit.

Example 6.2.9. If a 10 µF is connected to a voltage source with

v(t) = 50 sin 2000t V

determine the current through the capacitor.

Example 6.2.10. Determine the voltage across a 2-µF capacitor if the
current through it is

i(t) = 6e−3000t mA

Assume that the initial capacitor voltage (at time t = 0) is zero.
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Example 6.2.11. Obtain the energy stored in each capacitor in the
figure below under dc conditions.

3 kΩ 

5 kΩ 

2 kΩ 

6 mA 4 kΩ 

2 mF

4 mF
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6.3. Series and Parallel Capacitors

We know from resistive circuits that series-parallel combination is a
powerful tool for simplifying circuits. This technique can be extended to
series-parallel connections of capacitors, which are sometimes encountered.
We desire to replace these capacitors by a single equivalent capacitor Ceq.

6.3.1. The equivalent capacitance of N parallel-connected capacitors
is the sum of the individual capacitance.

Ceq = C1 + C2 + · · ·+ CN

C1

i

i1

C2

i2

C3

i3

CN

iN
+

 – 

v

The equivalent capacitance of N series-connected capacitors is the the
reciprocal of the sum of the reciprocals of the individual capacitances.

1

Ceq
=

1

C1
+

1

C2
+ · · ·+ 1

CN

C1 C2 C3 CN

+ v1 – + v2 – + v3 – + vN –

i

+

 – 

v

Example 6.3.2. Find the Ceq.

5 µF

Ceq

a

b

20 µF 6 µF 20 µF

60 µF
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6.4. Inductors

6.4.1. An inductor is a passive element designed to store energy in its
magnetic field.

6.4.2. Inductors find numerous applications in electronic and power sys-
tems. They are used in power supplies, transformers, radios, TVs, radars,
and electric motors.

6.4.3. Circuit symbol of inductor:

L

i

v
+ 

–
L

i

v
+ 

–
L

i

v
+ 

–

6.4.4. If a current is allowed to pass through an inductor, the voltage
across the inductor is directly proportional to the time rate of change of
the current, i.e.,

(6.4) v(t) = L
d

dt
i(t),

where L is the constant of proportionality called the inductance of the
inductor. The unit of inductance is henry (H), named in honor of Joseph
Henry.

• 1 henry equals 1 volt-second per ampere.

6.4.5. By integration, the current-voltage relation is

i(t) =
1

L

∫ t

to

v(τ) dτ + i(to),

where i(to) is the current at time to.

6.4.6. The instantaneous power delivered to the inductor is

p(t) = v(t)× i(t) =

(
L
d

dt
i(t)

)
i(t)
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0 di/dt

Slope = L

v

The energy stored in the inductor is

w(t) =

∫ t

−∞
p(τ) dτ =

1

2
Li2(t).

6.4.7. Like capacitors, commercially available inductors come in differ-
ent values and types. Typical practical inductors have inductance values
ranging from a few microhenrys (µH), as in communication systems, to
tens of henrys (H) as in power systems.

6.4.8. Two important implications of (6.4):

(a) An inductor acts like a short circuit to dc.
When the current through an inductor is not changing with time

(i.e., dc current), its derivative wrt. time is di
dt = 0 and hence the

voltage across the inductor is v(t) = Ldi
dt = L× 0 = 0.

(b) The current through an inductor cannot change instantaneously.
This opposition to the change in current is an important property

of the inductor. A discontinuous change in the current through an
inductor requires an infinite voltage, which is not physically possible.

(a)

t

i

(b)

t

i

6.4.9. Remark: The ideal inductor does not dissipate energy. The
energy stored in it can be retrieved at a later time. The inductor takes
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power from the circuit when storing energy and delivers power to the circuit
when returning previously stored energy.

Example 6.4.10. If the current through a 1-mH inductor is i(t) =
20 cos 100t mA, find the terminal voltage and the energy stored.

Example 6.4.11. Find the current through a 5-H inductor if the voltage
across it is

v(t) =

{
30t2, t > 0

0, t < 0
.

In addition, find the energy stored within 0 < t < 5 s.
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Example 6.4.12. The terminal voltage of a 2-H inductor is v(t) =
10(1− t) V. Find the current flowing through it at t = 4 s and the energy
stored in it within 0 < t < 4 s. Assume i(0) = 2 A.

Example 6.4.13. Determine vC , iL and the energy stored in the capac-
itor and inductor in the following circuit under dc conditions.

1 Ω 

4 Ω 

5 Ω 

12 V 2 H

1 F

+

vC
–

iL

i
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Example 6.4.14. Determine vC , iL and the energy stored in the capac-
itor and inductor in the following circuit under dc conditions.

2 Ω 4 A 4 F6 Ω 

6 H

+

vC
–

iL

6.5. Series and Parallel Inductors

6.5.1. The equivalent inductance of N series-connected inductors is the
sum of the individual inductances, i.e.,

Leq = L1 + L2 + · · ·+ LN

L1

v

i L2 L3 LN

+ v1 – + v2 – + v3 – + vN –… +

 – 
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6.5.2. The equivalent inductance of N parallel inductors is the recipro-
cal of the sum of the reciprocals of the individual inductances, i.e.,

1

Leq
=

1

L1
+

1

L2
+ · · ·+ 1

LN

L1
v

i

L2 L3 LN

+

 – 

i1 i2 i3 iN

6.5.3. Remark: Note that

(a) inductors in series are combined in exactly the same way as resistors
in series and

(b) inductors in parallel are combined in the same way as resistors in
parallel.

It is appropriate at this point to summarize the most important
characteristics of the three basic circuit elements we have studied. The
summary is given in Table 6.1.

The wye-delta transformation discussed in Section 2.7 for resistors
can be extended to capacitors and inductors.
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TABLE 6.1

Important characteristics of the basic elements.†

Relation Resistor (R) Capacitor (C) Inductor (L)

p or w:

Series:

Parallel:

At dc: Same Open circuit Short circuit

Circuit variable
that cannot
change abruptly: Not applicable v i

† Passive sign convention is assumed.

Leq �
L1L2

L1 � L2
Ceq � C1 � C2Req �

R1R2

R1 � R2

Leq � L1 � L2Ceq �
C1C2

C1 � C2
Req � R1 � R2

w �
1

2
 Li2w �

1

2
 Cv2p � i2R �

v2

R

i �
1

L
 �

t

t0

 v dt � i(t0)i � C 

dv
dt

i � v�Ri-v:

v � L 

di

dt
v �

1

C
 �

t

t0

 i dt � v(t0)v � i Rv-i:

Find the equivalent inductance of the circuit shown in Fig. 6.31.

Solution:
The 10-H, 12-H, and 20-H inductors are in series; thus, combining
them gives a 42-H inductance. This 42-H inductor is in parallel with
the 7-H inductor so that they are combined, to give

This 6-H inductor is in series with the 4-H and 8-H inductors. Hence,

Leq � 4 � 6 � 8 � 18 H

7 � 42

7 � 42
� 6 H

Example 6.11

4 H 20 H

8 H 10 H

12 H7 H
Leq

Figure 6.31
For Example 6.11.

Calculate the equivalent inductance for the inductive ladder network in
Fig. 6.32.

Practice Problem 6.11

20 mH 100 mH 40 mH

30 mH 20 mH40 mH50 mH
Leq

Answer: 25 mH.

Figure 6.32
For Practice Prob. 6.11.
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Example 6.5.4. Find the equivalent inductance Leq of the circuit shown
below.

4 H

Leq

a

b

7 H 12 H

20 H

8 H 10 H

6.6. Applications: Integrators and Differentiators

6.6.1. Capacitors and inductors possess the following three special prop-
erties that make them very useful in electric circuits:

(a) The capacity to store energy makes them useful as temporary volt-
age or current sources. Thus, they can be used for generating a
large amount of current or voltage for a short period of time.

(b) Capacitors oppose any abrupt change in voltage, while inductors
oppose any abrupt change in current. This property makes induc-
tors useful for spark or arc suppression and for converting pulsating
dc voltage into relatively smooth dc voltage.

(c) Capacitors and inductors are frequency sensitive. This property
makes them useful for frequency discrimination.

The first two properties are put to use in dc circuits, while the third
one is taken advantage of in ac circuits.

In this final part of the chapter, we will consider two applications in-
volving capacitors and op amps: integrator and differentiator.
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6.6.2. An integrator is an op amp circuit whose output is proportional
to the integral of the input signal. We obtain an integrator by replacing
the feedback resistor Rf in the inverting amplifier by a capacitor.

+

 – 

v0

+

 – 

iR

vi

R

a

CiC

+

 – 

This gives
d

dt
vo(t) = − 1

RC
vi(t),

which implies

vo(t) = − 1

RC

∫ t

0

vi(τ)dτ + vo(0).

6.6.3. A differentiator is an op amp circuit whose output is propor-
tional to the differentiation of the input signal. We obtain a differentiator
by replacing the input resistor in the inverting amplifier by a capacitor.
This gives

+

 – 

v0

+

 – 

iR

a

R

iC

vi

C

+

 – 

vo(t) = −RC d

dt
vi(t).




